Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Adv Drug Deliv Rev ; 197: 114828, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320056

ABSTRACT

Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.


Subject(s)
Nanomedicine , Nanoparticles , Humans , Nanomedicine/methods , Nanotechnology/methods , Nanoparticles/toxicity , Nanoparticles/chemistry , Lysosomes
2.
Biomater Sci ; 11(10): 3431-3449, 2023 May 16.
Article in English | MEDLINE | ID: covidwho-2256332

ABSTRACT

Viruses have a worldwide impact on healthcare and social and economic growth because they are the largest cause of mortality due to infectious diseases. Furthermore, the long-term conventional drug use comes with substantial risks to public health, such as the rapid evolution of drug resistance and the emergence of secondary side effects. Therefore, it is necessary to develop new methods for the treatment of virus-related diseases. In this case, the use of nanomaterial-based nanomedicines possesses tremendous advantages over the traditional treatment approach. Nanomaterial-based drug delivery systems have unique features that make them promising candidates in the pursuit of therapeutic benefits. In this review, we present the various biocompatible nanomaterials that show promise as nanomedicines for anti-viral therapy. Also, we include how current developments in nanomedicine are being used to treat and prevent the most common viral illnesses such as the flu, HIV, SARS-CoV-2, monkeypox, and human papillomaviruses.


Subject(s)
COVID-19 , Communicable Diseases , Virus Diseases , Humans , Nanomedicine/methods , SARS-CoV-2 , Drug Delivery Systems/methods , Virus Diseases/drug therapy
3.
ACS Biomater Sci Eng ; 9(3): 1656-1671, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2271527

ABSTRACT

As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Genome, Viral , Nanomedicine , Nanostructures , Oligoribonucleotides , Peptide Nucleic Acids , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Drug Treatment/adverse effects , COVID-19 Drug Treatment/methods , Nanostructures/administration & dosage , Nanostructures/adverse effects , Nanostructures/therapeutic use , Nanomedicine/methods , Patient Safety , Peptide Nucleic Acids/administration & dosage , Peptide Nucleic Acids/adverse effects , Peptide Nucleic Acids/pharmacokinetics , Peptide Nucleic Acids/therapeutic use , Oligoribonucleotides/administration & dosage , Oligoribonucleotides/adverse effects , Oligoribonucleotides/pharmacokinetics , Oligoribonucleotides/therapeutic use , Animals , Mice , Mice, Inbred BALB C , In Vitro Techniques , Genome, Viral/drug effects , Genome, Viral/genetics , Tissue Distribution
4.
Drug Deliv Transl Res ; 12(9): 2042-2047, 2022 09.
Article in English | MEDLINE | ID: covidwho-2007292

ABSTRACT

Nanotechnologies enable great opportunities for the development and use of innovative (nano)medicines. As is common for scientific and technical developments, recognized safety evaluation methods for regulatory purposes are lagging behind. The specific properties responsible for the desired functioning also hamper the safety evaluation of such products. Pharmacokinetics determination of the active pharmaceutical ingredient as well as the nanomaterial component is crucial. Due to their particulate nature, nanomedicines, similar to all nanomaterials, are primarily removed from the circulation by phagocytizing cells that are part of the immune system. Therefore, the immune system can be potentially a specific target for adverse effects of nanomedicines, and thus needs special attention during the safety evaluation. This DDTR special issue on the results of the REFINE project on a regulatory science framework for nanomedical products presents a highly valuable body of knowledge needed to address regulatory challenges and gaps in currently available testing methods for the safety evaluation of nanomedicines.


Subject(s)
Nanomedicine , Nanostructures , Nanomedicine/methods , Nanostructures/adverse effects , Nanotechnology
5.
Nat Nanotechnol ; 17(6): 570-576, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900493

ABSTRACT

Several vaccines against COVID-19 use nanoparticles to protect the antigen cargo (either proteins or nucleic acids), increase the immunogenicity and ultimately the efficacy. The characterization of these nanomedicines is challenging due to their intrinsic complexity and requires the use of multidisciplinary techniques and competencies. The accurate characterization of nanovaccines can be conceptualized as a combination of physicochemical, immunological and toxicological assays. This will help to address key challenges in the preclinical characterization, will guide the rapid development of safe and effective vaccines for current and future health crises, and will streamline the regulatory process.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Nanomedicine/methods , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Vaccines/chemistry
6.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1715400

ABSTRACT

Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.


Subject(s)
Cell Membrane Structures/metabolism , Animals , Biological Transport/physiology , Humans , Nanomedicine/methods , Nanotubes , Tissue Distribution/physiology
7.
Nat Commun ; 13(1): 968, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1705624

ABSTRACT

DNA/RNA-gold nanoparticle (DNA/RNA-AuNP) nanoprobes have been widely employed for nanobiotechnology applications. Here, we discover that both thiolated and non-thiolated DNA/RNA can be efficiently attached to AuNPs to achieve high-stable spherical nucleic acid (SNA) within minutes under a domestic microwave (MW)-assisted heating-dry circumstance. Further studies show that for non-thiolated DNA/RNA the conjugation is poly (T/U) tag dependent. Spectroscopy, test strip hybridization, and loading counting experiments indicate that low-affinity poly (T/U) tag mediates the formation of a standing-up conformation, which is distributed in the outer layer of SNA structure. In further application studies, CRISPR/Cas9-sgRNA (136 bp), SARS-CoV-2 RNA fragment (1278 bp), and rolling circle amplification (RCA) DNA products (over 1000 bp) can be successfully attached on AuNPs, which overcomes the routine methods in long-chain nucleic acid-AuNP conjugation, exhibiting great promise in biosensing and nucleic acids delivery applications. Current heating-dry strategy has improved traditional DNA/RNA-AuNP conjugation methods in simplicity, rapidity, cost, and universality.


Subject(s)
Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Biotechnology/methods , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , DNA/chemistry , Heating/methods , Humans , Limit of Detection , Microwaves , Nanomedicine/methods , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/genetics
8.
Adv Drug Deliv Rev ; 181: 114083, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588554

ABSTRACT

Despite the massive interest and recent developments in the field of nanomedicine, only a limited number of formulations have found their way to the clinics. This shortcoming reveals the challenges facing the clinical translation of this technology. In the current article, we summarize and evaluate the status, market situation, and clinical profiles of the reported nanomedicines, the shortcomings limiting their clinical translation, as well as some approaches designed to break through this barrier. Moreover, some emerging technologies that have the potential to compete with nanomedicines are highlighted. Lastly, we identify the key factors that should be considered in nanomedicine-related research to be clinically-translatable. These can be classified into five areas: rational design during the research and development stage, the recruitment of representative preclinical models, careful design of clinical trials, development of specific and uniform regulatory protocols, and calls for non-classic sponsorship. This new field of endeavor was firmly established during the last two decades and more in-depth progress is expected in the coming years.


Subject(s)
Nanomedicine/methods , Animals , Drug Compounding/methods , Humans , Nanoparticles/chemistry
9.
Mikrochim Acta ; 188(12): 434, 2021 11 27.
Article in English | MEDLINE | ID: covidwho-1536308

ABSTRACT

A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core-shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12-4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Electrochemistry/methods , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanomedicine/methods , Nanotechnology/methods , Pyrazines/pharmacology , Colloids/chemistry , Electrodes , Gold/chemistry , Humans , Limit of Detection , Linear Models , Nanotubes , Polymers/chemistry
10.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1299446

ABSTRACT

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


Subject(s)
Anti-Infective Agents/administration & dosage , Curcumin/administration & dosage , Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Curcumin/chemistry , Humans , Micelles , Nanomedicine/methods , Nanoparticles/chemistry
11.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: covidwho-1244038

ABSTRACT

In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Cytokine Release Syndrome/drug therapy , Nanomedicine/methods , Oxidative Stress/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , SARS-CoV-2/drug effects , Apoptosis/drug effects , COVID-19/metabolism , COVID-19/physiopathology , Cholecalciferol/pharmacology , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/metabolism , Humans , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Renin-Angiotensin System/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism , Tannins/pharmacology , Trehalose/pharmacology
12.
Chem Rev ; 121(13): 7398-7467, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1243272

ABSTRACT

RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.


Subject(s)
Nanomedicine/methods , Neoplasms/drug therapy , RNA Stability , RNA/chemistry , Animals , Humans , Molecular Targeted Therapy , Thermodynamics
13.
Life Sci ; 278: 119561, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1201658

ABSTRACT

Respiratory viral infections are major cause of highly mortal pandemics. They are impacting socioeconomic development and healthcare system globally. These emerging deadly respiratory viruses develop newer survival strategies to live inside host cells and tricking the immune system of host. Currently, medical facilities, therapies and research -development teams of every country kneel down before novel corona virus (SARS-CoV-2) which claimed ~2,828,629 lives till date. Thus, there is urgent requirement of novel treatment strategies to combat against these emerging respiratory viral infections. Nanocarriers come under the umbrella of nanotechnology and offer numerous benefits compared to traditional dosage forms. Further, unique physicochemical properties (size, shape and surface charge) of nanocarriers provide additional advantage for targeted delivery. This review discusses in detail about the respiratory viruses, their transmission mode and cell invasion pathways, survival strategies, available therapies, and nanocarriers for the delivery of therapeutics. Further, the role of nanocarriers in the development of treatment therapy against SARS-CoV-2 is also overviewed.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/therapy , Nanomedicine/methods , Respiratory Tract Infections/therapy , Virus Diseases/therapy , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Drug Carriers/chemistry , Drug Delivery Systems/methods , Host-Pathogen Interactions/drug effects , Humans , Nanostructures/chemistry , Nanotechnology/methods , Respiratory Tract Infections/prevention & control , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Diseases/prevention & control , Virus Internalization/drug effects , Viruses/drug effects
15.
J Biomater Sci Polym Ed ; 32(9): 1219-1249, 2021 06.
Article in English | MEDLINE | ID: covidwho-1160539

ABSTRACT

The recent coronavirus disease-2019 (COVID-19) outbreak has increased at an alarming rate, representing a substantial cause of mortality worldwide. Respiratory injuries are major COVID-19 related complications, leading to poor lung circulation, tissue scarring, and airway obstruction. Despite an in-depth investigation of respiratory injury's molecular pathogenesis, effective treatments have yet to be developed. Moreover, early detection of viral infection is required to halt the disease-related long-term complications, including respiratory injuries. The currently employed detection technique (quantitative real-time polymerase chain reaction or qRT-PCR) failed to meet this need at some point because it is costly, time-consuming, and requires higher expertise and technical skills. Polymer-based nanobiosensing techniques can be employed to overcome these limitations. Polymeric nanomaterials have the potential for clinical applications due to their versatile features like low cytotoxicity, biodegradability, bioavailability, biocompatibility, and specific delivery at the targeted site of action. In recent years, innovative polymeric nanomedicine approaches have been developed to deliver therapeutic agents and support tissue growth for the inflamed organs, including the lung. This review highlights the most recent advances of polymer-based nanomedicine approaches in infectious disease diagnosis and treatments. This paper also focuses on the potential of novel nanomedicine techniques that may prove to be therapeutically efficient in fighting against COVID-19 related respiratory injuries.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Nanomedicine/methods , Nanostructures/therapeutic use , Polymers/therapeutic use , SARS-CoV-2/drug effects , Antiviral Agents/administration & dosage , Biosensing Techniques , COVID-19/diagnosis , COVID-19/pathology , COVID-19 Testing , COVID-19 Vaccines , Dendrimers , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Early Diagnosis , Humans , Lung/pathology , Lung/physiopathology , Micelles , Nanoconjugates/therapeutic use , Nanoparticles , Nanostructures/administration & dosage , Precision Medicine , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/pathology , Tissue Engineering , Treatment Outcome
16.
Life Sci ; 276: 119437, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157592

ABSTRACT

In Coronavirus disease 2019 (COVID-19), a decreased number of regulatory T (Treg) cells and their mediated factors lead to a hyperinflammatory state due to overactivation of the inflammatory cells and factors during the infection. In the current study, we evaluated the Nanocurcumin effects on the Treg cell population and corresponding factors in mild and severe COVID-19 patients. To investigate the Nanocurcumin effects, 80 COVID-19 patients (40 at the severe stage and 40 at the mild stage) were selected and classified into Nanocurcumin and placebo arms. In both the Nanocurcumin and placebo groups, the Treg cell frequency, the gene expression of Treg transcription factor forkhead box P3 (FoxP3), and cytokines (IL-10, IL-35, and TGF-ß), as well as the serum levels of cytokines were measured before and after treatment. In both mild and severe COVID-19 patients, Nanocurcumin could considerably upregulate the frequency of Treg cells, the expression levels of FoxP3, IL-10, IL-35, and TGF-ß, as well as the serum secretion levels of cytokines in the Nanocurcumin-treated group compared to the placebo group. The abovementioned factors were remarkably increased in the post-treatment with Nanocurcumin before pre-treatment conditions. By contrast, it has been observed no notable alteration in the placebo group. Our findings revealed the SinaCurcumin® effective function in a significant increase in the number of Treg cells and their mediated factors in the Nanocurcumin group than in the placebo group in both mild and severe patients. Hence, it would be an efficient therapeutic agent in rehabilitating COVID-19 infected patients.


Subject(s)
COVID-19 Drug Treatment , Curcumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , COVID-19/immunology , COVID-19/virology , Cytokines/drug effects , Cytokines/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukins/immunology , Male , Middle Aged , Nanomedicine/methods , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
17.
Life Sci ; 276: 119428, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157591

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a form of oxygenation failure primarily characterized by rapid inflammation resulting from a direct pulmonary or indirect systemic insult. ARDS has been a major cause of death in the recent COVID-19 outbreak wherein asymptomatic respiratory tract infection progresses to ARDS from pneumonia have emphasized the need for a reliable therapy for the disease. The disease has a high mortality rate of approximately 30-50%. Despite the high mortality rate, a dearth of effective pharmacotherapy exists that demands extensive research in this area. The complex ARDS pathophysiology which remains to be understood completely and the multifactorial etiology of the disease has led to the poor diagnosis, impeded drug-delivery to the deeper pulmonary tissues, and delayed treatment of the ARDS patients. Besides, critically ill patients are unable to tolerate the off-target side effects. The vast domain of nanobiotechnology presents several drug delivery systems offering numerous benefits such as targeted delivery, prolonged drug release, and uniform drug-distribution. The present review presents a brief insight into the ARDS pathophysiology and summarizes conventional pharmacotherapies available to date. Furthermore, the review provides an updated report of major developments in the nanomedicinal approaches for the treatment of ARDS. We also discuss different nano-formulations studied extensively in the ARDS preclinical models along with underlining the advantages as well as challenges that need to be addressed in the future.


Subject(s)
Nanomedicine/methods , Respiratory Distress Syndrome/drug therapy , COVID-19/physiopathology , Critical Illness , Drug Delivery Systems/methods , Humans , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/isolation & purification
18.
Eur J Pharm Biopharm ; 163: 252-265, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1144592

ABSTRACT

Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles-in line with regulatory needs-is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , RNA/administration & dosage , RNA/chemistry , Fractionation, Field Flow/methods , Humans , Nanomedicine/methods , Particle Size , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry
19.
Eur J Pharmacol ; 896: 173930, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1139488

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 , Nanomedicine/methods , SARS-CoV-2/drug effects , Viral Vaccines/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , Drug Development , Humans
20.
Nanomedicine (Lond) ; 16(6): 497-516, 2021 03.
Article in English | MEDLINE | ID: covidwho-1121589

ABSTRACT

COVID-19, as an emerging infectious disease, has caused significant mortality and morbidity along with socioeconomic impact. No effective treatment or vaccine has been approved yet for this pandemic disease. Cutting-edge tools, especially nanotechnology, should be strongly considered to tackle this virus. This review aims to propose several strategies to design and fabricate effective diagnostic and therapeutic agents against COVID-19 by the aid of nanotechnology. Polymeric, inorganic self-assembling materials and peptide-based nanoparticles are promising tools for battling COVID-19 as well as its rapid diagnosis. This review summarizes all of the exciting advances nanomaterials are making toward COVID-19 prevention, diagnosis and therapy.


Subject(s)
COVID-19/diagnosis , COVID-19/therapy , Nanomedicine/methods , Nanostructures/therapeutic use , Animals , COVID-19/prevention & control , COVID-19 Testing/methods , Humans , Nanostructures/chemistry , Nanotechnology/methods , Peptides/chemistry , Peptides/therapeutic use , Polymers/chemistry , Polymers/therapeutic use , Proteins/chemistry , Proteins/therapeutic use , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL